
:i.

·1· .
.

I ••

I

;,,

OSI UK User Group Newsletter
Volume 2 No. 6 November/December 1981

More on Communications - the Modem
Indirect files in ROM BASIC

Hooks into BASIC

~- . ~

New products from MUTEK
To get the year off to a good start and increase the capabiliti es of your ~y\l l'm hl'f l' .trl' a few
hardware products and some excellent software offering s.

One of the questions we are continually asked is " How do I put di sk drl VI'~ on d Supt •rhoard?"
We now have available a very high quality board to do ju st th at. Thi' MC:M'l board is a bus
compatible 10 x 12 card giving space for up to 24K of static memory , a rl'al 11ml' d oc-k and an OSI
standard floppy disc controller. The controller will operat e with S¼" or 8" drl vl's but does not
include the data separator required for most 5¼" unit s. Full detail s for lnt rrhl rin K are supplied
with any version but we cannot offer advice on interfacing to oth er than ShuKart type drives .

MCM9/A Bare board £37.00
MCM9/B Floppy disk controller section populated £75.00
MCM9 Complete card fully populated £185.00
FL 1 Header card for disk ribbon cable with conne ction to MCM9 £6.00
FLC4 Complete ribbon cable with connectors for 2 x 8" driv ers and FL 1 4 ft long. £32.00
Fl2 40 way ribon cable with OIL header at one end £4.50
FL3 Molex connectors 12 way plug or socket £0.25
We expect to have stocks of 8" drives available by the end of January . Prices will bl' around £250.

Communications
The MSSS is a multiple communications and memory <;:ard and wh en full y popul ated gives 2
parallel and 5 serial ports and up to BK of static memory . The port s are designed to support OSl 's
Centronics and Diablo printer drivers but can be used as gen eral parallel 1/0 po rts. The board is
quite expensive when fully populated but we can offer this as a bare board compl ete with Molex
connectors at very realistic price.
MSSS board with documentation and Molex connectors £37.00

Both the MSSS and the MCM9 are designed for use with the OSI 48 pin backplane but will connect
to a Superboard or UK101 using a 40 pin header and ribbon cable and 4, 12 way mol ex plugs.
A neater method is to use the Zen expansion board adverti sed elsewhere!

Software
A few good quality products this month, both utilitarian and good fun .

Mini-Compiler
This is a 5.8K basic program that converts a sub-set of Microsoft Basic int o machin e rn dl'. For those
not familiar with compilers they tend to be large , slow and very expensive. Thi s one is small , slow
and fairly cheap and produces relocatable machine code which do es not rely on any routin es in
ROM BASIC. The code generated will hence operate on any 6502 based machin e with minimal
changes.
Little knowledge of machine code is required but a working capability makes It mor e fun lo use
and provides a greater base for imaginative use. The advantage of a compil er Is th at pro wa ms may
be easily produced in a high level language and then converted to machin e codt' for very fast
operation. This will add a new dimension to video action! The compil er does not support floating
point arithmetic or string handling but does cope with the followin g:
Legal variables A-Z (positive integers Oto 64K) A= N (0,;;N< 64K)

A=B A=B OR C POKE A,B
A=B+N A=B AND C A= PEEK (N)
A=A+C A=B OR N POKE A,N
A=B-C A=B AND N GOSUB N
IF A=B THEN GOTO RETURN X= USR(X)

GOTO N
A• D•B
A• D•N
A• B/C

IF A=B THEN GOSUB STOP FOR l = A TO B STEP C
REM NEXT I
and similarly for>, <·and<>
and several others! !

The Price: £15.50 cassette and documentation

See our separate software catalogue for details of our new range of software and firmware.

All prices quoted exclude VAT.

MUTEK
,,,,.

Q uarry Hill ,
Box, Wilts.

Tel: Bath (0225) 743289

....

..,

-

Contents
Editorial

BASIC Programming
String Graphics - Roger Derry
CEGMON Print At - C. Hurt
Using WAIT - Jack Pike

Extending BASIC
Subroutine Killer - Dave Woolcock

Disk Update
OS-65D with the Enhanced Superboard - David Anderson
CEGMON and Pico-DOS

Machine Code Programming .
Displaying Numbers in Machine Code - J.M. Leach
Assembler Notes - George Chkiantz

Features
Indirect Files in ROM BASIC - George Chkiantz
The Modem : key to computer communication - Richard Elen
Forum-80 Bulletin Board - Frederick Brown

Hardware Update
Extra Keys for th e UK101 - Richard Elen
S0Hz Display for the Superboard

Review
Magnum EPROM board - J.M. Leach

The Back-Page Program - Steve Smith

Plus BASIC Quickies , Disk Notes and much more

Cover picture by courtesy of the Mary Evans Picture Library

The OSI/UK User Group Newsletter is published by the OSI/UK Group, @1981.
Unless otherwise stated, copyright on each article is held jointly by the Group
and the author. Requests for permission to reprint articles will normally be
given where the article was origninated by ,the Group, if the request is made in
writing. The Newsletter is published approximately bimonthly, subject to the
limitations of our essentially 'spare time' operation. Subscriptions run from
January to December: thus subscriptions received during the year are
automatically back-dated and new members receive the year's issues to date.
The UK subscription is £10 per annum; overseas subscriptions are £11 surface
mail, £14 airmail. All subscriptions include six issues of the Newsletter. Volume
1, produced during our first year and consisting of four issues, is available as a
complete set at £7 UK, £8 overseas, including postage. Cheques should be
made payable to the OSI/UK User Group.

Advertising space is available in usual magazine format positions: rates are
available on request. Small ads are accepted at a rate of Sp per word and will
normally be published in the next available Newsletter.

The OSI/UK User Group Newsletter welcomes contributions of any length on
subject which will interest members. Articles should preferably be typed or
printed double-spaced on one side of the paper, or legibly handwritten.
Articles will also be accepted on cassette or disk.

The OSI/UK User Group exists to assist and inform the user of Ohio Scientific
and related computer systems, primarily via the Newsletter. Written queries
are welcomed, although due to committments we can only guarantee to reply
when we have time available. An SAE should be enclosed with all queries, and
if data sheets etc. are required, the SAE should be sufficiently large!

All enquiries, subscriptions, articles etc. should be addressed to the OSI/UK
User Group, 12 Bennerley Road, London SW11 6DS, England.

"'

OSI/UK User Group Newsletter

Editorial

At last, the 'final 1981 issue' . We ' re gradually clawing back the lateness which
developed around the middle of 1981, partially by working on two issues almost at
once. As a result, we should be able to offer Volume 3 numb er 1 within a very
short time from now. From then on, we should be back on sync.

Which brings us on to another point. The end of volum e 2 (this issue) also
marks the end of 1981 subscriptions. Now that we have rationalised the
subscription system, they all end at once. We hope, ther efore, that you have
found the last six issues useful and interesting and worth the £10 you sent us. In
1982 we will, with your support and resubscription, be able to produce another
six issues . You will have noticed that the last couple of issues have been larger
than previously: we intend this to continue, yet we will not be raising the
subscription . Inside this issue you will find a resubscription form ; we very much
hope that you will want to continue to be a member of the Group. There is no
other publication, even in the United States, which offers so much information on
OSI machines and related equipment . We also hope th at our technical query
service has been useful to you during the year, and that w e have been able to help
you, both personally and through the Newsletter, to get the best out of your
system. We sincerely hope that you will want to continue to take advantage of
what we are offering.

Already lined up for the coming issues of the New slett er are a number of
important features that will interest almost all users, wheth er their interests lie in
hardware or software, BASIC or machine code . Next issue begins a major series
on upgrading to disk: starting from first principles, the series will help yo u find
your way through the jungle of options and systems, to get whatJou need at a
price you can afford. Drives are getting cheaper all the tim e, an disk stor age
opens a whole new world of speed and flexibility for your sysem . A lso slated for
the coming months are articles on enhancing BASIC, and th e usual comp leme nt
of hints, programming tips, hardware modifications, BASIC and machine -code
utilities and applications programs, disk notes plus further articles on getting yo ur
computer to communicate with the outside world. This year shou ld also see our
own Bulletin Board get off the ground. There are plenty of interesting and useful
things due to become available to User Group member s in 1982: we hope yo u' ll
continue to stay with us to enjoy them! Happy computing in 1982!

,,..

Richard Elen

4

I
I!'.,

./

I
I
ir
'

·-

BASIC PROGRAMMING

String graphics
Roger Derry

This program is a development of Aardvark 's screen-clear routine using the
screen as string storage. I reasoned that the following would be true :

• If you can write blanks to the screen then any character can be written .
• Instead of strings of single characters, text could be written.
• Having told the co mput er that a particular string variable was in screen

RAM, when that variable is called again the computer will look for it on the
screen and find the current contents of that portion of the screen.

The program demon strates this by printing centred text on the screen and then
calling a simple graphics -dr awi ng routine. At any point the contents of the screen
can be stored or the store recalled. At first glance you might think that text would
come out backwards : it doe sn't , as BASIC stores text backwards going backwards
down the memory!

10 REM * Experimental graphics package *
20 REM * Roger Derry *
30 REM * (for Compukit UK101 with MONUK01) *
35 GOTO 10000
40 5C= 53251
50 GO5UB 2900: REM initialize and clear screen
90 POKE 15,255
100 FOR X= 1 TO 255: A$ = A$+"#": NEXT
110 GO5UB 1000
120 FOR DD = 1 TO 3000: NEXT
130 GO5UB 3000: REM clear screen
140POKE11 ,0: POKE12,25 3
145 REM PEEK(519) gives po sition of cursor along
146 REM line in New Monitor Compukit
147 REM Loe 512 can be used in old monitors
150 X= U5R(X): K5= PEEK(531) IF PEEK(519)> 46 THEN PRINT
151 IF K5= 1 THEN 200
152 IF K5=2 THEN 300
153 IF K5= 4 THEN ZZ = 0
1~IFK5 =5 THENZZ = 127
155 IF K5=6 THEl'-I ZZ = 64
156 IF K5=7 THEN 500
157 IF PEEK(531)<33 THEN PRINT CHR$(PEEK(531));: GOTO 150
158 IF K5+ZZ>255 THEN 150
160 PRINT CHR$(PEEK(531)+ZZ);
170 GOTO 150
200 M1$=51$: M2$=52$: M3$ = 53$: M4$=54$: GOTO 130
300A=PEEK(129): B= PEEK(130)
310 POKE 129,255: POKE 130,211
320 51$=M1$: 52$=M2$: 53$=M3$: 54$=M4$
325 54$=54$+"": 53$=53$+"": 52$=52$+ "": 51$=51$+""
330 POKE 129,A: POKE 130,B
340GOTO 150

..
5

500 GOSUB 3000
510 SAVE: POKE 15,255
520 PRINT M1$
530 PRINT M2$
540 PRINT M3$
550 PRINT M4$
630 GOSUB 3000: PRINT: PRINT "String transfer ended"
640 FOR DD = 1 TO 4000: NEXT: GOSUB 3000
650GOTO 300
1000A=PEEK(129): B= PEEK(130)
1010POKE129 ,255 : POKE1 30,211
1025 S4$=A$+ "" : 53$= A$+ "": 52$=A$+"": 51$=A$+ '"'
1030 POKE 129,A: POKE 130,B
1040 RETURN
2000 GOSUB 4000
2001 GOSUB 3010: POKE 129,0 : POKE 130,210: GOSUB 4000: GOSUB 3030
2005 FOR DD = 1 TO 5000: NEXT
2010 PRINT: PRINT
2020 DATA"This program uses a development of the Aardvark
2030 DATA"screen clear routine. This works by setting
2040 DATA"the string storage pointers (locs 129, 130) to
2050 DATA "point to the screen RAM
2060 DATA " If this is done a string addition
2070 DATA "will cause the string to
2080 DATA "be 'printed' to the screen. The text of the
2090 DATA"string will end at the address pointed to.
2100 DATA"This program first sets up a 255-character
2110 DATA"string and ' prints' it onto the screen as 4
2120 DATA "different variables , 51$, 52$, 53$, 54$",
2123 DATA''To make this clear the
2125 DATA "#
2130 DATA"character is used to fill the screen.
2135 DATA,"Press any key to continue
2140 DATA Once this has been done the four string
2150 DATA variables 'live' on the screen. Although the
2160 DATA screen's contents will change the computer will
2170 DATA look for the contents of those variables on the
2180 DATA screen . So if any other variable is made equal
2190 DATA to one of the screen variables (A$=51$) then A$
2200 DATA will be loaded with the current contents of the
2210 DATA screen. This program will store the current
2220 DATA screen contents in four variables when
2230 DATA Ctrl-A is pressed.
2240 DATA Ctrl-B will fill the screen with the stored
2250 DATA contents (Ctrl-C stops the program as usual),
2255 DATA,"Press any key to continue ",
2260 DATA Ctrl-D selects the keyboard to operate normally
2280 DATA Ctrl-E shifts the keyed character up
2290 DATA 64 ASCII codes
2300 DATA Ctrl-F shifts the keyed character up
2310 DATA 128ASCII codes
2320 DATA Ctrl-G outputs the stored screen variables to
2330 DAT A cassette,
2'.340 DATA With New Monitor Compukits the cursor controls
2345 DAT A can be used
2500 DATA This program is only for demonstration
2510 DATA It has not been optimised
2530 DATA,"Press any key to continue

6

,,..

.,

'")

~

.,

2898 END
2899 REM Initialise clear screen
2900 FOR X=1 TO 64: CS$=C5$+CHR$(32): NEXT
3000 REM Clear-screen (Aardvark)
3005 CS$= CS$
3010A=PEEK(129): B=PEEK(130)
3020 POKE 129,0: POKE 130,212
3030 FOR 0 = 1 TO 16: CS$=CS$+"": NEXT
3040 POKE 129,A: POKE 130,B: RETURN
4000 CS$=" STRING GRAPHICS : RETURN
5000:
6000:
10000 REM• Print to screen using string storage•
10010 REM• by Roger Derry •
10020 REM
10080:
10100 REM Print from data list
10110 5$= CHR$(32)
10120 FOR 0 = 1 TO 30: B$= B$+5$: NEXT
10130 FOR Q=1 TO 16
10140 READ M$
10150 IF M$ =" # " THEN RUN 40
10160 GOSUB 10210
10170 NEXT
10180POKE11 ,0: POKE12 ,253: X= USR(X)
10190 GOTO 10130
10200 END
10210 SC=53246
10220:
10230 REM Find end of required line
10240:
10250 AD = SC+(64*Q): A1 =INT(AD/256): A2 = AD-(A1 *256)
10260 A3= PEEK(129): A4=PEEK(130): L=52-LEN(M$)
10270 M$ = LEFT$(B$,U2)+ M$+LEFT$(B$,L/2)
10280 POKE 129,A2: POKE 130,A1: M$=M$+""
10290 POKE 129,A3: POKE 130,A4: RETURN
40000 DATA,#

CEGMON 'Print at'
C. Hurt

1 REM • subroutine using CEGMON screen handler with UK101 •
2 REM • to replace 'print-at' facility •
3 REM • using X/Y co-ordinates to give •
4 REM * line-number, column-number •
5 REM • e.g. Line 12 Col 25 is PA=1225 •
6 REM * e.g. Line 7 Col 8 is PA= 708 •
7 REM • In use - e.g. [PA= 1225: GOSUB 10 I •
8 REM • end each PRINT$ with ';' •
9 GOTO 20

10 PRINT CHR$(12);: X=INT(PN100): Y=PA-(X*100)
11 IF X/4= INT(X/4) THEN K=205
12 IF (X+1) /4=INT((X+1)/4) THEN K=141
13 IF (X+2)/4=INT((X=2) /4) THEN K=77
14 IF (X+3) /4=INT((X+3) /4) THEN K=13
15 W=K+Y: Z=INT((X+4)-.1)+208
16 Z=INT((X/4)-.1)+208

T ..
7

17 PRINT: POKE 555,W: POKE 556,Z
18 RETURN
20 REM • start of user program •
30 CL$=CHR$(26)
40 PRINT CL$;: GOSUB 200
50 PA=1515: GOSUB 10: PRINT ''This is the test";
55 GOSUB 200
60 PA=101: GOSUB 10: PRINT ''Top left";
65 GOSUB 200
70 PA=3230 : GOSUB 10: PRINT "Bottom right ";
75 GOSUB 200
80 PA=130: GOSUB 10: PRINT ''Top right ";
85 GOSUB 200
90 PA=3201: GOSUB 10: PRINT "Bottom left ";
95 GOSUB 200

100 PA= (INT(RND(1)*30) +1)*100+ (I NT(RND (1)*25) + 1
110 GOSUB 10: PRINT "< PA="; PA;
120 GOSUB 200: GOSUB 200: GOSUB 200
150 GOTO 40
200 FOR P= 1 TO 1000: NEXT P: RETURN

Using WAIT
Jack Pike

[Unfortunately, when we printed this item in Volume 2 issue 4, we qmitted the
program, which enables programs to avoid program s with string delimiters. Here
it is. -Ed.]

This is a program which uses WAIT to input a BASIC program from tape into RAM
(from $800 on) and to output the program again to save it (on hitting the
spacebar) . The program was developed to get round the problems of having
characters like , : 11 and @ in string input. Only characters 0-31 are masked (line
40) from the input. They cause a new line to be initiated (when 11 lin e input " flag
1=0). The array P contains pointers to the start of each new lin e in RAM (up to 100
lines) . Lines 100+ output the program for saving on tape .

,,..

Obviously the application of this program is a bit specialised. It was developed to
check the feasibility of this type of input. Thus, although it 11work s", the program
is not necessarily efficient or robust.

10 POKE 133,0 : POKE 134,8: CLEAR
12 !=2048: DIMP(99)
14 CA=61440 : CB=61441: CC=S7088
16 POKE 530,1
18 POKE CC,253
20 WAIT CA,1
30 P=PEEK(CB)
34 IF PEEK(CC)=239 GOTO 100
40 IF P>31 THEN 60
45 IF 1=1 GOTO 20
50 P(J0)=J:)0=)0+1
52 IF)0<2 GOTO 55
53 FOR L=P(J0-2) TO P(J0-1)-1
54 PRINT CHR$(PEEK(L));: NEXT L: PRINT
55 1=1: GOTO 20

8

60 IF 1= 1 AND (P>57 OR P< 49) THEN 20
65 l=0
70 POKE J,P:)=)+1
80 GOTO 20

100 POKE 530,0
105 SAVE
110 A$=C HR$(0)+CH R$(0)
120 FOR J=0 TO)0-1
130 PRINT A$;A$;A$;A$;CHR$(10) ;CHR$(13);
140 FOR L= P()) TO P(J+1) ·1
150 PRINT CHR$(PEEK(L));
160 NEXT L: PRINT
170 NEXT J
180 POKE 517,0

I

J

•

\~

11

EXTENDING BASIC

UK101 subroutine RETURN killer
Dave Woolcock

Jumping out of FOR-NEXT loop s and GOSUBs before they are finished usually
result s in 'out of memor y' errors as the stack gets clogged up with return
addresses etc. The so lution for loop s is easy (once you see it) .

Eg, in a loop FOR I = 1 TO N

exit with IF (whatever) THEN l=N (wherever)

NEXT I

For su,broutines there is no easy solution as RETURN is the only way out, and that
will send the program back to where it was called from - not where we want to
go to .

The program in fig 1 will cancel a RETURN for UK101s with the new BASIC 1 chip
just by CALLing it and then using GOTO.

For the original BASIC 1 chips use the program in fig 2 by POKEing addresses 11
and 12 with its start address and doing an X=USR(X) from within the subroutine,
then using GOTO.

To kill two or more levels of subroutines just CALL the program the required
number of times.

If the program is not in a GOSUB at the time or is also in an unfinished loop
(which hasn't been dealt with as above) then a new error code is generated: NR
ERROR IN LINE ... -ie a NO RETURN error. Old BASIC 1 chips will produce
squiggle.

The program can be located anywhere convenient (eg page 2) or if you have
new BASIC 1 (or an input-vector 'unmask' routine) then you can etnbed the
program in a REM statement. To do this enter line OREM 111

""' line of quotes 11111111

then enter the monitor and locate the start of the quotes (ASCII $22) which should
be at $0306 for the first line of a program. Enter the program in hex from the next
location, $0307, and warmstart . The REM line should now contain a few graphic
nonsense characters plus a few spare quotes which can be edited away.

The reason for the quotes is so that the BASIC program REM line can be saved
and loaded without the interpreter detokenising them. Line 0 is preferred as it
can't be shifted by insertions of other BASIC program lines, in which case the
routine is operated by CALL 775.

I find this routine useful for using the 'control' key for overriding the normal
exits from keyboard polling subroutines.

9

,,.

As far as I am aware there is no reason why this shouldn ' t work on the
Superboard.

fig 1
entry

error

fig 2
entry
loop

error

for use with CALL
68 PLA
68 PLA
68 PLA
C9 BC CMP #$BC
DO 05 BNE error
68 PLA
68 PLA
68 PLA
68 PLA
60 RTS
A2 03 LOX #$03
4C 4E A2 JMP $A24E

for use with X= USR(X)
A2 OB LOX #$ OB
68 PLA
CA DEX
DO FC BNE loop
C9 BC CMP #$BC
DO 05 BNE error
68 PLA
68 PLA
68 PLA
68 PLA
60 RTS
A2 03 LOX #$03
4C 4E A2 JMP $A24E

ditch CALL return addres s
pick up GOSUB token

error if not a GOSUB

ditch GOSUB's line number

ditch GOSUB's line pointer
and exit

fix error pointer and jump

ditch 10 USR stack levels

error if not GOSUB token

ditch GOSUB's line number

ditch GOSUB 's line pointer
and exit

fix error code and jump

BASIC Quickies

From Trevor Watson: This routine 'centre-justifies' a line of print:
1000 PRINT TAB ((44-LEN(Z$))/2);Z$:RETURN

For example:
10 Z$="I'm in the middle":GOSUB 1000
20 Z$="So am l":GOSUB 1000

In line 1000, 44 is the screen width, and should be adjusted appropriately .
The 'GETKEY in the August /September issue didn't work for me! I have always
used this:

10 POKE 11,0: POKE 12,253
20 PRINT "Press any key"
30 X=USR(X): P=PEEK (531)
40 PRINT CHR$(P)" was pressed"

Or, for example in a games program, I might test for key A by :
40 IF PEEK(531)=65 THEN ...

The USR jump POKEs only have to be specified once, of course.

10

~-,,-

)

;)
I

1\,

DISK UPDATE

OS-65 D with enhanced Superboard ·
David Anderson

I was recently called upon to modify a 5¼-inch disk system (OS-65D) to run a C1
with large screen . The master disk, OS-65D V3.1 as supplied by Mighty Micro, did
not contain the extended monitor, as the supplied documentation would have
one believe .

The modification is, however , straightforward and is outlined below :
1. Boot up DOS from a copy diskette - never write to your original diskette .

· It doesn't matter which system you boot up into (C1 or C1
modified). If you boot into C1 modified then you will just
have to put up with the 'funnies ' on the screen until you have
finished these mods.

2. UNLOCK from the basic program BEXEC•
3. EXIT from basic into DOS
4. CA 0200=13,1 call in disk utilities
5. GO 0200 execute disk utilities
6. · 2 select No . 2 from utilities
7. R4200 read into $4200+ the contents of track zero
8. E exit utilities
9. GO FEOO execute monitor - do not press_ BREAK and M
10. Do the following changes. All the addresses are offset by 8K ($2000), hence
when they are booted they will exist at $2200+ and not $4200+.
Address Originally Change to Remarks
45C3 D3 D7
~~6 * 7D n
~CD D3 D7
45D5 D3 D7
45FB 1F 3F
45FD * 04 07
4602 * 08 oc
4608 1F 3F
460A 1D 3C
460F * 07 OB
4616 D3 D7
4610 D3 D7
4624 D3 D7
4626 *- 65 40
462A 65 40
4630 D3 D7
4637 7D 7C
463A D3 D7
4648 20 40

cursor start address high
cursor end address low

test for 64-character line
left overscan -1
left overscan + right overscan

left + right overscan -1

low address of start cursor

number of addresses scrolled

11

4649
4653

DO
D3

D7
D7

• The values of these addresses may be chang ed to pos iti on cur sor correc tly .
11 . . 0200G re-enter diskette utilities
12. 2 select utility No . 2
13. W4200/2200,8 rewrite $4200+ to track zero with mod s
14. Reboot disk.
If the modifications are made on a C1-modified , the screen sho uld now behave
itself. If modifications are made with a C1, the screen will be bl ank after boot. In
this case, to test the disk run a program from the disk - pr efe rabl y o ne whi ch
POKEs to the screen . This should cause the disk drive to click a few tim es befo re
the pokes to the screen appear .

Disk notes

Himem on disk systems is found by looking for the first byte of RAM as opp osed
to ROM or nothing by working from $C000 downwards . Thi s means th at systems
with a discontinuous block of RAM could be severely fooled!

From Peek 65 or somewhere: JMP (03FF) will fail on all 6502s.

CEGMON and Pico-DOS

C. Heath writes: I have recently purchased a CEGMON monitor , and have found
that it is not compatible with the Pico-DOS softw are. How ever th e patch is
straightforward :

Memory locations $25D9 changed to 46
$25DE changed to FB.

This is part of a subroutine which initialises the input vector . Thi s is located on
track zero of the Pico-DOS disk . The OS-65D track zero R/W Util ity can be used. If
track zero is read into locations $4200 on, location s $45D9 and $45DE mu st be
changed, and the track rewritten.

For more general use, eg for other versions of CEGMON or oth er monitors,
replace the contents of $24D9 and $25DE with the low and high byt es respectiv ely
of the address found at the input vector location (INVEC).

Hitachi CMOS RAM

Olaf Swembel of Sweden writes: The new Hitachi 2K CMOS stati c RAMs, type
HM6116P-3 are compatible with standard 2716 EPROMs, but pin s 18 (CS) and 20
(0f) have to be switched by jumpers to the socket or rewir ed o n th e memory
board. Also, pin 21 (WE) has to be wired to the common sign al run ning to pin 10
on 2114 RAMs.

12

,,..

1

1\

7

MACHINE-CODE PROGRAMMING

Displaying numbers in machine-code programs
by J.M. Leach

When you write a machin e-code program it is quite difficult to work out a way of
displaying intermediat e num eric values , or producing meaningful output on th e
screen, although o f cour se all thi s is handl ed within th e BASIC interpret er .
Volume 1 issue 1 gave th e addr esses of the necessary routin es, but it is not quit e
so simple to get them actually to work. The foll owing short program s show th e
way to using this information in practice .

2-byte unsigned hex numbers converted to decimal
Copy the 2 bytes to $AD,$AE with the most significant byte fir st , unlike memory
reference in machine code. Then call $B962 to print the number, then $A86C if
you want a CR/LF. The sample program prints all numbers from Oto 65535, rather
quickly . Use RESET to stop it .

Demonstration program to print 2 bytes as unsigned decimal number
1100 A900 LDA #$00 ; Initialise
1102 85E8 STA $EB
1104 85E9 STA $E9
1106 A5EB LDA $EB
1108 85AD STA $AD
110A A5E9 LDA $E9
110C 85AE STA $AE
110E 2062B9 JSR $B962
1111 206CA8 JSR $A86C
1114 E6E9 INC $E9
1116 D0EE BNE $1106
1118 E6EB INC $E8
111A D0EA BNE $1106
111C 00 BRK

Floating-point numbers

Copy EB,E9 to AD,AE

Display number
CR/LF (optional)
Add 1 to 2-byte number
and go back to display it

Back to Monitor

Volume 1 issue 2 described how FP numbers are stored in memory , but the print
routine is not quite like that. $AC holds the exponent and $AD to $AF hold the
mantissa. The difference is that the sign is given by $BO, ie negative if the most
significant bit is set (~ 80 hex).

Subroutine $B962 sets up what it finds in $AC-BO as ASCII characters at the
bottom of the stack, altering the contents of $AC-BO as it does so . To display the
number, the message printer, $A8C3, is called , as the following subroutine
demonstrates . The contents of $EB-EC are used to hold your number and are
·copied to $AC-BO.

13

Relocatable subroutine to print floating -point number
1000 08 PHP
1001 A204 LOX #$04 Copy 5 bytes to FP accumulator from
1003 BSEB LOA $E8,X ; your own area
1005 95AC STA $E8,X
1007 CA DEX
1008 10F9 BPL $1003
100A 206EB9 JSR $B96E
100D A001 LDY #$01
100F A900 LOA #$00
1011 20C3A8 JSR $A8C3
1014 206CA8 JSR $A86C
1017 A900 LOA #$00
1019 855F STA $SF
101B 28 PLP
101C 60 RTS

Set up ASCII characters in stack
Set up address for message printer

Display number
CR/LF (option - otherwise replac e with EAs)
A fix is required to prevent an error message
on return from an X=USR(X) in BASIC

The following BASIC program will allow you to experiment with th e floating -point
routine, but don't try to list all possibilities as it might take quite a lon g time.

10 FOR I = 4096 TO 4124 : REM Set up machine-code
20 READ Z; POKE 1,Z: NEXT I
30 DATA 8,162,4,181 ,232, 149, 172,202,16,249,32, 110,185,160,1
40 DATA 169,0,32,195,168,32, 108,168,169,0,133,95,40,96
50 P=232 : REM =EB, offset for data insertion
60 POKE 11,0 : POKE 12,16: REM Change if you relocate the subroutine
70 FOR l=0 TO 4
80 A=0 : REM Try A=255
90 POKE P+l,A

100 NEXT I
110 POKE P+1,128 : REM Experimental; try< 128 for an eventual crash!
120 FOR 1=120 TO 150
130 POKE P,I : REM Experimental display
140 FOR J=P TO P+4: PRINT PEEK (J);: NEXT J: PRINT" ";: REM Show data
150 X=USR(X) : REM Show result
160 NEXT I

Line 110 gives a clue to printing the numeric value of variables in BASIC, for
example in a debugging aid that lists the current value of all variables. AND the
content of $AD with $80 and copy to $BO. Then OR $AD with $80 to set the most
significant byte . A further report later .

BASIC EOR

It is, in fact, possible to write a single-line Exclusive -OR routin e In BASIC, writes
Steve Smith, contrary to what was suggested in Part 6 of BAS/Cs of machine code ,
without using a FOR ... NEXT loop. The following function assl~ns the Exclusive
OR of A and B to C

C=(A ORB) AND NOT (A AND B)
It is especially pleasing as it even 'reads right' I

14

7

f

•

'

) -

,)

Assembler Notes

A clever trick in the OSI assembler is that if you are lazy and typ e O as the line
number, the new line will be placed in the file after the last line printed . This is
useful in several ways . For example, it makes the formatting of the source code
much easier to do so that you get a tidy program to read ; it can save you key
strokes; and it allows you to add the last few additional instructions in a file when
you have already filled up the original gap left between line number s! Now ,
thanks to OSUIN, yet another trick is revealed . If you have ever wished to have a
library of assembler source code subroutines so that you could just feed them
in to the source code when they were needed instead of having to type them in ,
here's how to go about it. Load the Assembler with the relevant program module .
Exit the assembler and use the ROM monitor (the extended monitor is advised on
disk systems) to change locaion $12D3 from $QA to $00. Warm start th e assembler
and resequence your module. Exit the assembler as before and change location
$12D3 back to $QA. Warm start again and observe that your code w ill print out
wit hout line numbers. Now save the source code on tape or di sk . When you wan t
to use the module in a program , all you have to do is to print up to the po int at
w hich the new code is to be inserted, download th e module (s) from cassette o r
fro m the indirect file, and finally resequence the entire file . Your module should
now be happily installed in its new home . It is unwise , to say th e least, to attemp
to edi t or delete a source file which has lines numbered zero in it - you have been
warne d!

The above procedure has been checked out quite thoroughly with the
disk -based systems and seems to work on cassette-based ones, although a few
~purious graphics and odd line numbers may occur with the latter . As usual we
wo uld be delighted to hear from anyone who sorts this out . On disk systems, you
wo uld obviously have to load the program module into the indirect file first, then
load the real file before finding the right place to download the module .

BASIC quickies
Bill Farmer

High-speed loading ...
The reason for the double characters while loading BASIC at high baud rates is
that the time taken for the screen to scroll causes an overrun error to be
gene rated by the ACIA. It needs two reads of the control register to clear the
erro r : one theoretically to read the error bit and do something about it, and one
to get the next character. Thus you get a repeat of the first character after the
scroll. This effect also makes loading horrid hex assembler tapes hard work .

... And a stack mystery
The funny 'look back up the stack' routine at $A1A1 in the BASIC ROMs is called
by the FOR routine to see if a similar FOR is outstanding. If it is, the stack pointer
is adjusted so that the new entry overwrites the old. So you can jump out of a
FOR-NEXT loop, despite what they say. Try :

10 FOR I = 1 TO 10
20 FOR J = 1 TO 10
30 GOTO 10

fhis should fill up the stack and crash with an OM error, but it doesn't .

15

FEATURES

Indirect file handler
For ROM BASIC systems

George Chkiantz
This article describes an indirect file handler for ROM BASIC systems in some
detail. I do not claim that the machine code is either the most elegant or the only
way of attaching this potential to your system, but I hope that it will provide a
good basis for experiment. The code emulates the handler used in th e disk -based
operating systems, although it differs on one important respect in that control of
the system is trapped during output rather than on input, unlike the DOS. This
allows the handler to be used by BASIC programs as well as in the direct mode , so
that BASIC programs can use memory as an input or output device . An added
extra is that <cTRL S> will halt screen output until some other key is pres sed, as in
the disk systems.

The program listing is in assembler format and has been vectored to start at
your favourite location for machine code patches , viz $0240. Originally assembled
and tested for a C2 running CEGMON, the program is easily modified to run on a
C1/UK101,as the only changes required relate to the inverted keyboard.

The four locations in lines 80-110 relate to required routines. INVEC, the input
vector, is almost universally in the same place, although this would have to be
changed if you have a monitor that is not compatible with OS l 's page-2 usage - for
example this may be necessary with WEMON . FILPTR must be two consecutive
locations in zero-page that are not in the input buffer; again you may have to
change these to suit your system monitor . The remaining locations are defined at
this point for the convenience of the assembler - they are set up by th e startup
sector anyway.

This program is written in three sections, the startup section just mention ed
links the handler into your system. The other two sections link into the input
vector and the output vector of the computer.

Memory location $02BE (A-HOLD) is used to store the accumulator temporarily
and $02BF is used as a flag FILFLG. This can contain one of three values , 00 which
signals that the indirect file is not in use, $80 if a write is in progress and $40 if a
read is in progress. Input is routed through the routine shown in lines 170-340. In
line 170, a BIT test loads the status register with bits 6 and 7 of FILFLG and, if bit 6 is
clear, the test in line 180 fails and the routine jumps to the normal input handler
(line 190). If the test in line 180 succeeds, the Y register is saved and cleared (lines
200-220) and the accumulator is loaded from the current location in the file
pointed at by FILPTR. The code generated in line 240 'hides' the next instruction at
250, so in line 260 a call is made to the subroutine INCPTR which increments
FILPTR. On return the character in the accumulator is checked for a $5D- <s HIFT
M>- which terminates input and output operations. If this is not the case, the Y
register is retrieved and the routine returns, whereas if a $SD was detected,
FILFLG is cleared to return control to normal.

The output vector is routed through the code starting at line 450, where a BIT
test is used to check bit 7 of Fl LFLG (BIT tests only change the status register). If bit
7 is set the test in line 460 will fail, the value in the accumulator is saved and

16

,,..

,~,

I\

~ 1

printed on screen (line 480), the Y register is saved and cleared (lines 490-520) and
the routine jumps to the hidden instruction at line 250, writing to the file etc. Thus
lines 250-340 are used by both read and write to the file, courtesy of the BIT
opcode infiltrated by line 240. Now, if the test _in line 460 had succeeded (no
output to file), a check is made for the file control characters <sHIFTK> and <cTRL
X> (lines 540-570) and if neither of these is found, the keyboard is checked for a
< cTRL S> which, if found, will halt output until some other key is pressed before
the output is (finally) put on to the screen.

In the event that a <cTRL X> or a <SHIFT K> (these, as with <SHIFT M>, have
been chosen to maintain compatibility with the system used by disks - you can
use what you like by changing the arguments of the appropriate CMP
instructions) was detected in the output stream, the section SETO.P (lines
680-760) is used to set FILFLG to the appropriate value by setting it to $80 and
shifting the flag right(= $40) if a control X was detected . A subroutine call in line
710 sets up FILPTR to the start of the file (lines 780-820). You may need to change
the values shown in line 780 and line 800 to suit your system.

The subroutine INCPTR (lines 360-410) does no range checking other than to
abort the handler if it attempts to go beyond $FFFF. No check is made to see
whether memory actually exists for the file, as in the disk version; this is left to the
user.

The section from line 890 on merely sets up the system so that the user can reset
the computer, do a warm start and go CALL 704 to link in the handler. Reset, M,
02C0G would work just as well. This code was mainly used for convenience in
testing, and its ommission would save a certain amount of room for other
machine code routines . If this is done, the labels INPUT and OUTPUT would have
to t;>e correctly defined for your system, and you would have to POKE INVEC and
OUTVEC to point to the appropriate points in the routine - $0240 and $0270 - to
setup the system at any time you pressed <BREAK>. Should the handler lose its
closing marker ($5D) - say you have written beyond the end of existing memory - it
may be necessary to POKE FILFLG to O in order to regain control of the handler on
restart. In this case the contents of the indirect file (as far as it got), can be
recovered by using the monitor, before trying to download.

One of the problems with a small machine is to define a sensible starting point
for !he indirect file. This is set by the subroutine SETPTR (lines 780-820). The code
suggested in the comment field (LDA $78, etc.) would make the file start
immediately after the BASIC source file, while (LDA $85 ... LDA $86) would make
the file start in a reversed area determined on cold start by memory size. All of
these options could be useful depending on the circumstances. The locations
given in the main code are the same as the default locations on disk systems: this
would allow the user to transform programs between systems . It should be noted
that there is no reason why (if you are downloading into BASIC using this system)
the BASIC source should not overwrite the start of the indirect file - it will never
catch up! Thus, for some applications (say the use of high speed cassette
interfaces) it could be sensible to start the file at $0340.

A general discussion on the use of indirect files is the subject of a later section
in this newsletter.

10
,: ,J
30
40
':).~

60

; 1-direc c filP. h3ndlP.r
lf0r ~JM rlAS[C systP.~ s
I OSI/U, USER GclfJU;)

(cl 19:31

17

I

M I 6~0 0290 68 CONr 1-'LA
80 021 -3= I NVcC = S021'3 ; 5FJ98 For CR1mon D 1'>60 029E 4C9HFF JI .IP OUTPIJT
9/J ,M f t:= t'ILPHI = S00f ..: (t ; er 670 I

I J/J Fl-9t3= OUfl-'UT = SF!-91:l ; l)u ,nmy lo cdtion~ 6 ~0 02AI 48 SETO.P PHA
110 fc,46= I Ni->ur = SFK46 II 690 02A 2 A 980 LOA £$80
120 100 02A4 8DBF02 STA F ILRG
I 30 024 ·0 * = S:il24J ; Ad just to !! !lit 5yst"11 7 10 02A l 208502 JSt? SHPfR
140 720 02AA 68 PLA
I ::,0 ;Sector linkRd to i/o 730 J2AB C918 CMP £S18
160 ; /40 JUD D003 BNE NOTI. P
I M l:l240 2CEJF.12 START 8If FILFLG 750 0,:Af 4E8F02 LSR FILFLG
I a:;, 2!24 3 7003 BVS RDF I LE .. 7MJ 0282 4C9BFF NOT!. P JMP OUTPUT
190 0245 4C46F t3 J '.II-' I NP ur 7/0 I ;SIJCDESTED FILE START
202! 024d 98 rtDFILE TYA 780 0285 A900 SETPTR LOA £ S 00 I LO~ s 71-3
210 0249 48 PHA 190 0.!81 85FE STA F ILPfR
220 024A A02J0 LDl' £S00 'o/ '3,10 021:l\/ A980 LOA £580 ;LOA. $7C
230 024C 81FE LO~ (F I Lr' fR) , f 8 10 0288 85FF STA F ILPrR+ I
240 024E 2C .BYfl:: S2C lhijes next in struction ()) (? '.320 02!3D 60 RTS
250 024F 91FE tlR!fFL STA <FIL,'fRJ,'{ tDtl ;
260 0 251 206402 JSK IN CPfR 8 40 028E ,:?0 A. HDLD • BYTI:: S 0.?
270 0254 C95D C'AP £550 1SH !Ff M CLOSES FIL E 850 028F 00 f!LFLG . BYTE S0.J
2d0 0256 D003 BNE NOTEiW 860
290 0258 tlCBF02 STY F ILFLG d 10 ; SfARf Ui-' Sl::CfOR
300 J25B 80BE02 NOTENO STA A.HOLD tl tl0 I
310 025E 68 PLA. ·N 0 li2Co ADl8 ,tJ2 I N IZ UlA. INVE C
320 025F A8 TM .,1,,10 02C3 804602 STA ROfILE-2
330 026.-1 ADBE02 LOA A.HOLD 9 10 0~C6 AD I 9 ,,12 L O~ INVE S.:+I
340 0263 60 RTS 92 ✓-1 o2C9 80 4102 STA. RDF ILE- I
350 I 11 M 02cc A94" LOA £$4 0
360 0264 E6FE IN CPTR IN C fILPfR 9 40 02CE 8D P302 STA I NVEC
370 J266 D007 BNE ENDI~C ,;,50 02D I ADIA.02 LOA I NVEC+2
3i3o 0268 E6FF I NC F ILP!"R+ I <.J60 2l2D4 8D9F f!l2 Sf A SE[(). P-2
3,10 026A D003 13NE END I ~C 97?J 0201 BOfB,,2 STA SEfPrR -2
400 026C 8CBF02 STY FILFLG ,,HJ 02DA 8D 79'12 STA. ST. o. P+9
410 026 1" 60 ENDIN C t?TS N J 0200 AD I t302 L OA I NVl::C:+3
420 ; 10 00 02E0 80A002 STA SEro . P-1
430 ;Sector linki?d t o o uto11t IJ l0 02E3 8D8402 STA SETPrn -1
440 I I 120 .1,<t:6 8D7 A,,2 S fA ST.O.P+lo
450 02/0 2CBr02 ST .o.P BIT f ILF LG lt, 30 J~i::9 A9M L'.)A £$70
460 0273 lll10 IWL NO~RI T (11' f 10 40 021:::ti eo1 A.02 STA I NVEC+2
470 0275 8DBE02 STA A.HOLD 11,j,1 02EE A902 LDA £$.-12
480 02 / 8 209B FF JSR OUTPUT l ,J':>0 02FJ 8D I BJ2 STA I NVl::C+3
4\/0 027 8 98 TYA l.:J/.IJ 02J--3 8[) 1902 S fA I NVEC+ I
500 027C 48 PHA l,j •M lj2J--6 A90tJ LOA £So0
510 0270 A000 LOY £S00 IJ.)0 i.l2f·3 8DBF02 SfA FILFLG
520 027F A081::02 LOA A.HOLD I I ,M 0d' B 4CtJ,-1 M J'AP i.lvl:1(1
530 0282 4C4F<'.l2 JMP WfHTFL ., 111,.-J I
540 0285 C958 NOfrn IT c•~p £S5El ; SH fFf K OPENS FILE

Cursor up 55ri, 028 7 F0 18 BE, SEro. P
:>60 0289 C918 Cl.IP £Sl8 -~ ; cnRL X READS F I LE R. Mallett writes : Having used CEGMON for some time now, I have discovered an
570 028B Fvll4 BE'1 SfTO. i-> J/ extra cursor control for moving the cursor upwards; it may work on OSI 5d0 021:lD 48 PHA
590 02dl:: A909 HALfOP LOA. £%00?01 kMI ; £% I I I I 0 I I 0 For C I /lJK I >1 I computers without CEGMON but I am not sure. It works by first returning the
600 0290 800 'l!OF STA SOF0J cursor to the beginning of the line, then it PRINTs the RUBOUT character
6 I ri, 0293 2C000F BI f SDf0o

(t '. f?
(CHR$(95)) to get onto the previous line, and finally PRINTs the carriage-return

620 0296 5005 BVC CONT 13VS for C I/IJ1(1 0 1 charac ter again (CHR$(13)),
630 ,i29q 10,n 13PL CONT I B'~ I for Cl /IJ I(I ,11 10 UP$ = CHR$(13) + CHR$(95) + CHR$(13)
640 029A 20'.il0FJ JSi-l SFu :1j 20 , whenever the cursor control is wanted PRINT UP$;

18 19

,,..

A HIGH SPEED CASSETTE LOADER
Using the indirect file

As mentioned in the article on high speed tape handling in th e June 1981 issue of
the newsletter, the problems associated with the time taken to tok eni se th e
BASIC line which limit the effective handling speed can be got over by using a
special loader. A suggestion as to how this can be accomplisned is shown in the
program accompanying this article. This program is an extension to the indirect
file handler also shown, and is to be used with it. It has been assembled to run on
a CEGMON-based C2 system, but the necessary changes for other systems are
given . The code could be asS'embled to run in place of the initialisation routine
shown in the file handler .

The routine assumes that BASIC has been cold started and that the file handler
has been initialised. This can be achieved by <BREAK> M02E6G or by CALL 742
from BASIC. The tape to be loaded should be lin ed up ready and CALL 704 typ ed
to start the loading pro cess. The program on tape must be termin ated by a <SHIFT
M> ($5D) - this can be achieved by typing <SHIFT M > after listing the program
when in SAVE mode . When the new program has been loaded , th e indirect fil e
handler is automatically turned on in the read mode , and download s the program
into the source code area. A special pointer setup procedure should allow the
user to concatenate programs .

The definitions in lines 70--130 relate to the machine and monitor that yo u are
using , those in lines 100--130 link this with the indirect file handler (nickname
INDFIL). These will have to be changed if you have re-located INDFIL.

When the routine is called, the file pointer (FILPTR) is set, by th e subro utine
SETUP in lines 300--340, to the end of any source code (program) already in th e
computer, after which the main loop (lines 180--240) is entered. The control
register of the ACIA is checked for a 'ready to read ' flag. In lines 180--200, the
Logical Shift Right puts this flag into the carry bit in the status register , after which
the character that is present in the ACIA is loaded. A subroutine call to ST.0 .P+S
(line 220) takes care of putting the character into memory and incrementing the
pointers, after which a check is made to see whether the end of the li sting has
been reached (denoted by a <SHIFT M> , $5D) and the program then loop s until
this is so . When the end of the listing has been reached , SETUP is called to reset
FILOTR to the start of the file, FILFLG is set to the read mode and the program
warm starts BASIC (which then calls the indirect file for input .. .).

Very high tape speeds should be possible using this routine (maybe even 9600
baud) . If even greater speed is needed, this could be achieved by using the
alternative code shown in lines 470 up in place of the main loop , although thi s
would probably be too long to fit into page 2.

CMO ERR
.A

20

,,..

10
20
30
40
50
60

,High speed cassette loader
,<couples with INDFILl

' OSI /UK USER GROUP
(C) I 981

(
1

i
/.
r

70 FC00=
80 0218=
90 fr95=

1(~0
110
120
130
140
150
160
170
180
190
200
2 10
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
460
460
460

480
490
495

0266=
00FE=
02BF=
0270=

02C0

02C0
02C3
02C6
02C7
02C9
02cc
02CF
0201
0203
0206
0208
020B

0200
0~0F
02EI
02E3
02E5

02E6
02E8
02EB
02EE
02EF
02FI
02F2
02F5

200002
AD00FC
4A
90FA
AD01FC
207502
C95D
00F0
20D002
A940
8DBF02
0018

A57B
85FE
A57C:,
85FF
60

A003
B9F802
991802
88
10F7
cs
8CBF02
4C0000

02F8 40
02F9 02
02FA 70
02FB 02

500 02cc 91 FE
510 02CE E6FE
520 0200 D002
530 02D2 E6FF
540 0204 C950

ACIA
INVEC
OUTPUT
INCPTR
FILPTR
Fl LFLG
ST.o.P

= SFC00
= $0218
= SFF95
= $0266
= S OOFE
= S02BF
= $0270

* = S02C0
I

ST ART JSR SETUr>
LOOP LOA AC! A

LSR A
BCC LCXJP
LOA ACI A+ I
JSR sT.o.P+5
CMP £S5 O
BNE LCXJP

ONLOAD JSR SETUiJ
LOA £$40
STA FILFLG
BNE EXIT
I

SETUP LOA S 7 8
STA F ILPl"R
LOA S 7C
STA F IL P fR+ I
RTS

' ' INIZ LOY £.S03
LOOP2 LOA TABLt:,Y

STA INV EC, Y
DEY
BPL LCX>P2
I NY
STY F ILFLG

;SF000 for CI/UKl01

; See
I
I

INDFIL
II

II

1To close file

; Re set po 1 n t er s
;Set INDFfL to read
:mimics control X
I Warm stF.trt of 8\SI C

!Loads new file
timmed!dtely after
;existing source code

EXIT JMP S000J fWarm start of BASIC

' TABLE .BYTE S4J,S02,S70,S02

,Alternative code to
;replace lines 220-230

' STA CFILPTR>,Y
INC FILPTR
BNE ENDINC
INC FILPfR+I

ENDINC CMP L$50

21

ASCII Files and Memory 1/0
by George Chkiantz

A very useful feature of OSI computers running OS-f>SD or OS-f>SU is that a
section of memory may be used as an input or output device by means of routines
built into the system. A similar handler for ROM-based machines is published
elsewhere in this issue. With this feature it is possible to merge programs simply,
pass programs between incompatible file systems (say between a word processor
and the assembler or BASIC), pass programs between different versions of BASIC
(ROM and disk , pass variables and strings between various program s, create
command files and so on.

This aspect of the disk systems has been in use for a long time and seems to
have been the main way of controlling the early versions of 65D. Disk users may
like to know that it is the method used to make the computer run the program
BEXEC• automatically on boot up and at no other time .

It should be noted at the outset that neither the memory output system nor it s
subset, the indirect file handler, have any error-trapping . Specifically, th e handl er
does not check to see if memory actually exists at the points in question, nor will
it stop writing to, or reading from, memory until actually told to do so. Thus it is
essential to take this into account when using the handlers, especially as the disk
control port comes straight after the user RAM in a 48K system, and writing into it
accidently could do nasty things!

The first step in using the handler is to decide on the way in which memory is to
be partitioned for the particular application. If the handler is to be used by a
program, the programs working memory must be restricted to stop it from
overwriting the indirect file and subsequently causing chaos. This is easily
achieved by POKEing the following locations with the required values :

Lo byte
Hi byte

ROM BASIC
133 ($85)
134 ($86)

650
132 ($84)
133 ($85)

65U
132 ($84)
133 ($85)

ASM
$12CB
$12CC

With the disk version of the assembler, use the 'himem' command Hnnnn to set
the upper memory limit to the hex address nnnn. The next job is to set up the
handler to use the designated area of memory. In the disk systems this is
somewhat complicated by the fact that there are two ways of accessing the
memory handler. The one offering the most complete control is that using Device
5 in 65D (Device 4 in 65U), while more convenient for immediate commands is
called the indirect file, which is a subset of the above systems with a preset start
point of $8000. Change the locations shown below to suit your memory
configuration.

Input Lo
Input Hi
Output Lo
Output Hi

22

,I<'

Memory pointers for indirect file

ROM Handler
694 ($02B6)
698 ($02BA)
694 ($02B6)
698 ($02BA)

650 (Kernel)
9373 ($249D)
9368 ($2498)
9559 ($2557)
9554 ($2552)

65U
11666 ($2D92)
11667 ($2D93)
11666 ($2D92
11667 ($2D93)

..

Note that both 65U and the RQM handler suggested in this issue have the same
address for input and output, while the manuals only quote the Hi address for
65D (it is much easier to start the file off at a page boundary). The changes to the
pointers may be poked from BASIC or can be permanently installed on the disk
for convenience-even by POKEs in BEXEC•. As the indirect file handler is part of
the DOS Kernel in 65D, it will work with any transient utility program, eg the
assembler, Exmon or certain word processors.

The location and values of the control codes for the handler are given in the
fo llowing table . These could be changed to suit your system - for example <CTRL
X> is convenient with the UK101, and if accidently pressed will probably cause
yo u to lose control of your system. Those for the ROM handler are not given here
as the assembler file can be changed to suit your machine.

System
650

65U

Indirect file control codes

Location Enable Disable
9550 ($254E) 91 ($5B) 255 ($FF)
9571 ($2563) 93 ($SD) 255 ($FF)
9594 ($2579) 24 ($18 255 ($FF)

14646 ($3936) 91 ($5B) 255 ($FF)
14677 ($3954) 93 ($SD) 255 ($FF)
14721 ($3981) 24 ($18) 255 ($FF)

Function
Write O /P to file
Close file
Read file

Write O/P to file
Close file
Read file

These control codes are accessed from the keyboard by typing (with shift lock
do wn) <SHIFT K> ([), <SHIFT M > (]) and <CTRL X> respectively. The codes are
tra pped on input by the system, which makes the screen output a little
unpredictable. The ROM handler published in this issue traps its control codes on
the output, to allow it to be used easily from BASIC and so the syntax is slightly
different.

When a $5B is detected on input, the indirect file handler is turned on and all
ou tput from the computer is written into memory from the defined location until
a.$5D is detected from the input device, which turns off the handler. Despite what
the manual says, the $5B is not echoed on the screen, although the $5D is echoed
twice to make up for it. When a $18 is detected, input will take place from the
defined start of the file and will only cease when a $SD is detected. In effect,
memory is being used as if it was the cassette recorder in a ROM-based system.

Some simple examples should clarify the use of this feature. We will assume
that the file handler has been set up to partition the memory equitably between
BASIC and the file. All instructions shown thus <SHIFT K> <RET> mean that the
user should press the shift key with letter K, followed by the return key.

1. To delete lines 100-199 in a BASIC program type, in the immediate mode:
FOR I= 100 TO 199: PRINT I: NEXT: <SHIFT K> <RET>

Numbers from 100 to 199 will appear in the left hand side of the screen. Then
press <SHIFT M> <RET>.

]] and (probably)
SN ERROR
OK will appear- don't worry!
<CTRL X>

23

The previous numbers will appear; BASIC thinks you are typing them in, and
deletes any existing line with a corresponding number . An OK,] and SN ERROR
will probably crop up again (BASIC is trying to obey the OK and the graphic as a
direct command). However, when you list your program, you will find that the
lines in question have all been deleted.

2. To merge PROG 1 and lines 100 to 374 of PROG 2 on disk systems:
DISK!"LO PROG 2 <RET> (65U: LOAD"PROG 2 <RET>)
LIST 100-374 <SHIFT K> <RET> required lines will list on screen.
<SHIFT M> <RET>
II
SN ERROR
OK will appear on screen
DISK! "LO PROG 1 <RET> (65U: LOAD"PROG 1 <RET>)
<CTRL X> <RET>

Required lines will be listed on screen, followed by:
OK
SN ERROR
l
SN ERROR
OK

or something like that!

LIST should verify that the two programs have been merged.
Users of 65D who have written their random access file program but have

forgotton to define the buffer first can easily LIST their program to the indirect
file, run the change utility to define the buffer, and then download the program
so that it is re-located above the buffer, then save the total on disk.

3. To transfer a ROM BASIC program, stored on disk in 65D, into the ROM
BASIC operating area, make sure that both handlers address the same start point.
Then , in the disk system, load the program and list it into the indirect file . Exit
from BASIC and, when in the Kernel, CALL the ROM handler into position . BREAK
and cold start ROM BASIC, presetting memory size so as not to wipe memory .
Initialise the handler and type <CTRL X>. The program should now be ready to
run. Programs could be uploaded ready to store on disk by the same procedur e.

These examples should suffice to show that a lot can be done with this very
flexible system, and readers are urged to experiment. Use of memory in/out via
the device handlers will now be considered . This part of the discussion pertain s to
the disk handlers only, but the function can easily be emulated by the
ROM-based system as the control codes for the file are trapped on output, so
printing the appropriate character will re-direct subsequent input or output as
required.

In OS-65D, Device 5 is the memory input and output system. The Kernel
command 'MEM nnnn, mmmm'will direct any output to device 5 to start from
mmmm, while input will start from nnnn, both locations being hexadecimal in
form (from BASIC thi~ would be DISK!"MEM nnnn, mmmm"). In OS-65U the
memory input start pointer is at locations 11657, 11658 ($2D89, $2D8A) Lo/Hi byte ;
the output pointer is similar and is located at 11661, 11662 ($2D8D, $2D8E). Once
these pointers have been set up, variables may be printed to the memory block by
PRINT#DV, data, or absorbed from it by INPUT#DV, variable where DV = 5 for
65D and 4 for 65U. Once again, an example might make this clear.

24

,,..

)

)

4. As part of a suite of programs, it is desired to transfer the values of the
variables N and A$(1) between PROG 1 and PROG 2. We will assume that space has
been allocated at the top of memory, starting at $7000 for this purpose. Then, the
end of PROG 1 could be:

1000 DISK!"MEM 7000, 7000": REM SETUP DEVICE 5
1010 PRINT#S, N
1020 FOR I= 1 TON: PRINT#S, A$ (I): NEXT
1030 RUN" PROG 2"

Now, the start of PROG 2 could read as follows :

10 DISK!" MEM 7000, 7000"
20 INPU1#S, N
30 FOR I= 1 TON: INPUT#S, A$ (I): NEXT

It should be obvious to readers that this will transfer the values required
between the two programs. In this manner, programs can be split up into sections
so that one is no longer limited by the amount of RAM on the system. This ability
is o ne of the reasons why disk - based computers can be so much more powerful
than cassette-based ones ever could be .

5. The next example is almost trivial but will serve to illustrate the concept of a
command file. In this case, the computer uses commands in the immediate mode
to change languages. The example to be discussed shows how to get BEXEC• to
select the assembler. The unwary may think that a mere 'DISK!" ASM '" would
suffice, but unfortunately this is not so. Regretfully the havoc that such an attempt
can cause may only 5how up when attempting to save your file to disk . If we
assume that the menu procedure will call line 1000 when the assembler is to be
selected , and that the memory is set up as for the above example, the following
wi ll generate a simple command file and subsequently execute it.

1000 DISK!" MEM 7000, 7000''
1010 PRINT#S, "EXIT": PRINT#S, "ASM": PRINT#S, "! 10 02, 02"
1020 DISK! " 1010, 02" : END
It should be clear by now that the indirect file handler is not difficult to use , and

can be used to make the system do many interesting things. The following points
may help if things go wrong. First, input via the <cTRL X> function will only
terminate if a $SD (])is detected in the input stream. Thus, if the file has written
beyo nd existing memory, this character may not be present. If this has happened ,
the monitor may be used to place this code in the last byte of real memory to
attempt to salvage the situation. When merging programs, deleting lines or using
other 'programming aids', it may not be necessary to limit BAS I Cs memory as it is
not using it. This makes the indirect file really easy to use -your risk! Obviously,
memory pointers should only be changed at the beginning of a program,
otherwise string data may well be lost or get muddled up with the indirect fiie
data. Conflicting usage of memory or attempting to write beyond the limits of
actual memory are the only likely sources of problems with this system . And,
finally, remember that the disk PIA comes right after the end of the user RAM, for
all those fortunate enough to have 48K machines. Writing to these is an easy
accident, but can prove expensive (and how do you think I know, eh?)

It is difficult to decide on a good set of defaults for a given memory
configuration, although if this is divided equally between the indirect file and the
language few problems should occur. It is worth bearing in mind that the indirect
file is in ASCII, includes carriage returns and line feeds, and is thus often a lot
longer than it might appear at first sight. ·

25

The Modem: key to computer communication
by Richard Elen

In the previous issue of the Newsletter, we saw how a Modem may be used to
couple your computer to a telephone line, thus enabling it (and you!) to
communicate with the outside world , via such media as the Computer Bulletin
Board Systems (CBBS) which exist in a number of places . Althou gh, of course ,
CBBS originated in the US, we are starting to see them spring up in Great Britain
as well (see the article elsewhere in this Newsletter) .

But, like many computer-related subjects, we owe a great deal to work done in
the United States, and in the field of computer communication, we need to pay
special attention to the American standards for modems. These stand ards ,
referred to generally as 'the Bell standard' in the previous issue, fall into several
main classes, of which the most important to us here are the Bell 103 and 113
standards. Generally speaking , the 103 and 113 types are used for communication
up to 300 baud (600 maximum), while faster types (such as the Bell 202, utili sed for
systems which require higher speeds, commonly 1200 baud), run at rates up to
9600 baud! The 113 type is a single-mode ('originate' or 'answer' - these terms will
be described later) 103-type compatible version. Certain high-speed systems ,
using synchronous transmission, can operate at 2400 baud and above ; the
majority of systems, however, are asynchronous, like the 103 type which is of
greatest interest to us here.

Of course, telephones were designed for voice transmission, and not for data
transfer, so the primary purpose of a modem (MODulator-DEModulator) is to
convert the digital signals which a computer can produce into analogue audio
signals which can be transmitted down a 'phone line, and reconvert them into
digital information at the other end. The bandwidth of a telephone line is only
about 3kHz, so the signals produced must be capable of being transmitted
satisfactorily within this band .

As noted in the previous article, there are a number of communications modes
which are possible: Simplex, in which only one-way information passing is
possible (as in receiving Teletext transmissions on TV); Half-duplex, where 2-way
communication is possible, but with only one operator 'talking' at one time while
the other is 'listening' (CB radio is an example of this); and Full-duplex, where
both parties can transmit and receive at once (a normal telephone conversation is
full-duplex). Generally, when computers operate in full-duplex mode down a
telephone line, both machines use the same baud rate; however, two speeds are
sometimes used to ircrease data transfer if the majority of traffic is in one
direction. In this case, the lower speed (called the 'reverse channel') is generally
used to transmit confirmations and error-checks. However, this mode does not
concern us here. Additionally, the term 'Half-duplex' is often used to denote that
outgoing data is printed directly at the sending terminal, while 'Full-duplex' refer s
to a mode in which the distant computer 'echoes' the outputted characters
without them being printed locally. This confirms reception by the distant

26

,,..

!d

machine of the correct characters. An OSI serial system uses 'Full-duplex' in this
sense between the terminal and the computer, and the terminal routine in the last
Newsletter is capable of 'Full-' and 'Half-duplex ' modes in this sense. However,
this use of the terms does not necessarily refer to the two-way capability of the
transmission link in use at the time.

An important aspect of telephone data links is the level at which signals are sent
and received. It is important that the signal level is not too high so as to introduce
distortion, yet not too low for noise to cause errors. The actual level sent down
the line should generally not exceed 0dBm (0.775VRMS or about 2V peak-to
peak), and should not drop below about -12d8m (0.5V p-p). The best
compromise is a level between -6 and -9d8m (1V to 0.75V p-p). On reception, of
course, the level may well have dropped considerably. On a local call full strength
may be received, but very often it may be considerably less. Below -50dBm is
generally too low for reasonable data transfer, and many modems refuse to deal
with signals below about - 40d8m (0.02V p-p) . Normal voice communication
down a 'phone line would be well-nigh impossible at 40d8m or less.

The modem itself converts the digital data into audio tones , and the exact tones
produced vary between the different types of modem . Bell 103 type modems are
the most usual, and 300 baud is the most usual speed, higher rates being possible
but more subject to error, as users of the standard OSI cassette interface will
know well (the cassette interface also converts digital serial signals into tones) .
The exact tones produced for a logical 'zero' and logical 'one' depend on which
mode the modem is operating in. In 'originate' mode, the mode in which a system
sending a call will be in, the tones are lower than they are in 'answer' mode, the
mode into which the receiving modem will be placed . The Bell 113 modems only
operate in one of these modes, a 113A modem operating in 'originate' mode, and
a 1138 modem operating only in 'answer'. Apart from this, the 103 and 113
standards are compatible. For talking to a CBBS, the 'originate-only' type is
sufficient (113A), and many surplus modems are of this type, most of them having
come from terminal network-type systems where the terminal is required to 'call
up' the central computer. Several hobbyist modems, however, are 'answer-only',

, and these are of little use. A group of friends who wish to communicate with each
o ther will obviously need full 'originate-answer' types df modems, or communica
tion will oniv be possible in one direction, or not at all!

Table 1 sh!)WS the frequencies used by Bell 103/113 types.
Mode TX'1' TX'0' RX'1' RX'0'
Originate 1270 Hz 1070 Hz 2225 Hz 2025 Hz
Answer 2225 Hz 2025 Hz 1270 Hz 1070 H7

To operate successfully at 300 baud, the modem should be designed to cope with
at least 400 baud: don't expect the unit to run too close to its operational limit! It
should be noticed that the different frequencies used are quite close together:
this means that the unit must be capable of switching frequencies quickly and
accurately; it also limits the speed. For greater speed, the Bell 202 system is
utilised, expanding the difference between '0' and '1' frequencies to 1kHz. This
makes full duplex impractical, as there is insufficient bandwidth to carry two
channels this far apart. On normal telephone lines, 1200 baud is practical with
half-duplex on this system, higher rates being theoretically possible (up to 2000
baud). However, while the modem itself can handle this rate, the telephone lines
generally cannot!

27

Other types of modems exist which can offer even higher speeds, but neither
the 202 types nor the faster 201 (2400 baud), 208 (4800 baud) and 209 (9600 baud)
systems concern us here, as they are not used by CBBS, and require complex
changeover signalling to indicate when the system must change over from send to
receive.

A standard Bell 103 modem utilises the normal RS232 pinout for inter
connection, using the standard 25-pin 'D-type' connector. The pinout is given in
Table 2. However, as always, readers should check the modem they acquire to
ensure that it actually works like this.

Table 2 standard pinout for RS232

Pin 1: Chassis.
Pin 2: Data to transmit.
Pin 3: Data to be received.
Pin 4: Request To Send (RTS). May be used for mode switching .
Pin 5: Clear to Send (CTS).
Pin 6: Data Set Ready (DSR). Always high when modem is on .
Pin 7: Logic ground.
Pin 8: Data Carrier Detect (DCD). Either always high, or high when link is

established.
Pin 20: Data Terminal Ready (DTR). May usually be ignored.
Prn 21: Signal Quality Detect (SQD). Often not provided. If available, indicated

that a bad line is present, and that errors may occur.
Pin 22: Ring Indicator (RI). Generally not provided. If available, is used to switch

modem into answer mode when a call is received.
All other pins are unconnected.

,,_.

Modems are available from a number of sources, mainly American. In all cases,
it is worth checking that the unit has the correct modes available, and is of the
right type. Remember that the majority of CBBS use Bell 103 type modems at 300
baud. For this application, your unit should at least have 'originate' (Bell 113A)
capability, if not both 'originate and 'answer'. Check the small print in
advertisements, and avoid units which offer 'answer only' capability, as these will
be difficult to use (for 'difficult' read 'impossible'). Check that the unit will
operate at at least 300 baud. Unless you have some personal high-speed
experiments you wish to carry out, avoid other than 103/113 type modems .

If you want to communicate with friends as well as with CBBS, you need a full
103 originate-answer unit. Dave Graham of Mutek informs us that he will shortly
be marketing such a device at a very reasonable price (£50 or less), so it is hardly
worth building your own. However, if construction takes your fancy, there are a
number of modem chips available which will handle the tone conversion for you
and will tack on to either the ACIA or direct on to the bus. Once again, check the
facilities and modes available as well as the standards. If desired, it should be
possible to 'double up' the cassette serial port with a modem system .so that you
can select which output you require. Do remember, however, if you build your
own unit, that only PO-approved modems should be attached to UK phone lines:
you may cause damage to the lines, and/or worse still, damage to your
relationship with your local Telephone Manager. If in doubt, use acoustic
coupling. Although this degrades the signal a little, it's safer that way. And at 300
baud, very little more can go wrong than can go wrong with your standard
cassette interface.

28

~11

:(1

Forum-80 computer bulletin board
Frederick Brown

Forum-BO (the first in the UK) is a computerised bulletin board which is open for
public use.

Messages and notices can be posted and retrieved over the telephone using a
personal computer (or a mainframe if that's all you've got) and a modem.

The system is oriented to the needs and interests of computer hobbyists.
Typical messages include: for sale, wanted, personal, hints, plus a library of
programs for you to download to use on your own system.

Computer bulletin boards
One of the fastest-growing uses of microcomputers these days is for exchanging
information between computers over the phone.

Private companies - for a fee - will let you access their computers to run
programs, games and the like, or find a wealth of information, ranging from the
latest stock-market prices to the latest news from the New York Times.

There is an alternative to such national enterprises, and one is up and running
in Hull with another to start in the Midlands soon.

Computer bulletin boards - also known as electronic message systems -
supported by local computer groups, retailers and individual hobbyists are simple
systems permitting the users to enter and retrieve messages or information.

There are several software packages available for running bulletin boards in the
States. One of the most useful is Forum-80, written by Bill Abney who has
organised a network of operators and standardised the sytems. The latest
improvement to Forum-80 is the downloading of programs, both BASIC and
machine-code, providing the caller has a suitable program for receiving
downloads. ·

Although every bulletin board has its own personality, as you will find out,
there is total standardisation of serial word length, parity, stop bits and baud
rates. This means that you can program your RS232 port and communicate with
nearly every bulletin board.

What do you need?
To access a bulletin-board system you need a personal computer or terminal with
RS232 installed, a modem and a software program. The programs must organise
the communication between the keyboard, CRT and the serial port.

This program can be written in BASIC, although it is far more efficient to write a
machine-language program to do the job. The concept is simple, and you should
be able to write a similar program for your system ..

The idea is to constantly scan the serial port and the keyboard for an input from

29

the outside world. If a byte is received by the serial port, then it is displayed on
the CRT or printed.

Once you have written or purchased a terminal program, you are ready to call a
bulletin board. With the serial port set up as described in the following table, pick
up the telephone and call the nearest bulletin-board system. When the other end
answers, you should hear a tone on the line .

baud= 300
word= 7
parity = even
stop bit = 1

Set your modem on 'originate' as described in its instruction manual. If all goes
well, some sort of message will appear on your CRT or printer. If not , press your
carriage-return key several times until the distant system respond s.

The bulletin-board system may ask you some mysterious question s like DO You

NEED LINEFEED? and DO YOU NEED NULLS? (o TO so). Answer N to the linefeed question .
If you are using a printer slower than 300 baud, answer the NULLS qu estion with

an appropriate number between 1 and 50. If the number you enter is too small ,
the first characters in each line will not print because the head of your printer is in
the process of a carriage return while those characters are being sent.

By entering a large enough number to the NULLS question, you force the
bulletin-board system to send null bytes ($00) while your printer is executing a
return.

Using the bulletin board
The bulletin board now prints a greeting and asks you your name. Use your given
name; it's important. Many of the bulletin boards scan the name inputted and
compare it to the TO field of messages in the system. The board indicates to the
person signing on that there is a message for him awaiting retrieval. Signing on as
KLEMCADIDDLEHOPPER defeats the whole purpose of bulletin-board systems. On ce
you tell the system who you are, you can access all its various functions.

If after calling the system you get lost, press your RETURN key several times to
get back to the FUNCTION mode. Then enter an H for Help!' This function explains
how to use the system. If you are totally lost, enter a T to exit (while in the
FUNCTION mode), and the bulletin-board system will disconnect.

Do not hang up on a bulletin-board system! Although the software is, in many
cases, written to handle the user who just hangs up, hanging up could cause a
system crash, putting it out of service for many other users.

Conclusion
I would like to thank Bill Abney for all the information and help in starting
Forum-80 in the UK.

During the last few weeks all the Forum-80 bulletin boards have been updated
and many new features have been added. If anybody is interested in running a
Forum-80 bulletin board or would like more information on using a bulletin
board, please contact me:

Frederick Brown
421 Endike Lane
Hull HU6 BAG tel (0482) 859169

The bulletin board is available on the above number on Tuesday and Thursday,
7.00pm to 10.00pm; Saturday and Sunday 12 noon to 10.00pm .

30

,,..

HARDWARE UPDATE

Extra Keys for the UK101

We have already pointed out the fact that 'single-key' BASIC commands can be
entered with CEGMON by use of the REPEAT key. This key allows access to a large
number of 'higher bit set' graphics characters, some of which are interpreted as
BASIC tokens by the interpreter. Unfortunately, The UK101 does not have a
REPEAT key, so this function is normally unavailable to UK101 CEGMON users,
even though the routines are there in the ROM.

In addition, the UK101 does not have an ESC key. On OSI systems, CEGMON
uses tre ESC key to copy characters into the new line under the Editor; in the
UK101 version Control Q is used instead . However, some printers can be
controlled with ESC sequences (ie ESC followed by another key), for example to
switch the printer on and off-line.

Both these keys are quite easy to add. The normal position for them on the
keyboard is with ESC to the left of the Q key, and REPEAT replacing the left-hand
RESET key (the Superboard, for example, has only one RESET key, while the 101
uses two in series to prevent accidental reset). However, you may place them
wherever is convenient. Having purchased suitable key switches and keytop, the

"-
~ R 7

§ R6

M
N RS
N

a,
~ R4

ROW
ADORE

"-.. R 3
N

~ R2

M
~ R

J, R
N

;s

1

8

.

w

s

X

a

127
C7

..1111

...1111

...1111

...1111

..1111

..1111

..1111

!\PT ...

2

9

L

E

D

C

A

191
C6

..1111

...

...

...

....

....

....

CTRL ...

3

•
0

R

F

V

z

223
cs

..1111

...1111

...1111

...1111

...1111

...1111

..1111

ESc ...

COLUMN ADDRESS

4

. .

♦

T

G

B

239
c,

..1111

....

...

..1111

...

...
SPACE

..1111

5

-

CR

y

H

N

I

247
CJ

...

...

..1111

...

..1111

...

...

6

RUB
OUT

u

J

M

.
'

251
C2

..1111

..1111

..1111

..1111

..1111

..1111

SHIFT
I LEFT I

...1111

7

I

K

'
p

253
C1

..1111

...

....

...

...
SH I FT
!RIGHT I ...

SHIFT
LOCK

254
Cf

..1111

31

REPEAT key is added by attaching one contact to the lin e whi ch co nn ects the Q
and W keys , and the other to the line which conne cts th e two Shift keys toget her.
The ESC key is added by connecting one contact to the lin e whi ch co nn ects V to F
or Z, and the other to the line between the Shift keys as abov e. The d iagram
shows where these keys fit into the keyboard matrix.
UK 101 CEGMON users will know that the 'up arrow key becom es Linefee d , 'up
arrow ' being accessed by Shift-N , as on other machines . Rather th an buying an
'LF' keytop , turning the 'up arrow ' keytop upside down (produ cin g 'dow n-arrow ')
does the job admirably!

BASIC Notes
Many users, lik e myself , may have been frustrat ed by the lack, in OS l 's BASICs, o f
the IF .. . THEN ... ELSE constru ct which can help one to writ e more stru ctu red
programs . An intere sting way of synthesi sing this type of statement uses Boo lean
variabl es.
10 X= (A> B)
If the above statement is run , X will adopt a value of O if A< = B, and - 1 if A> B.
Using this , an IF ... THEN ... ELSE construct is easily made up as fo llows:
10 X=(A> B): REM Condition
20 ON X+2 GOTO 50, 30
30 REM "ELSE" mode - condition failed
40 REM "ELSE" mode - conditioned failed
50 REM " THEN " mode - A was gr eater than B
GOSUB s could , of cour se be used instead of GOTO s. If the " ELSE" pro cedur e is
placed directly after the ON ... GOTO statement, line 20 can becom e
20 ON X+2 GOTO50
with no problems as ON ... GOTO will " fall through " under th ese co nditio ns.
Anoth er advantage of using thi s method is that the conditional op erati ons are no t
restricted to the remainder of a BASIC line, itself limited to 72 characters in
length .

A similar system could be used to simulate other structur ed prog ramm ing
techniques such as the WHILE (condition) DO (procedure) or REPEAT (p roce du re)
UNTIL (condition).

The difficulty in implementing these using FOR .. . NEXT loop s is th at a
FOR ... NEXT loop is always executed at least once. However, th e fo llow ing will
never be executed if the condition is not met
10 X=(A > B)
20 ON X+2 GOSUB 100, 120 :REM WHILE (A> B) DO (sub 100)
30 REM ... Condition failed, continue program

100
110
120

REM .. . (sub 100) BEGIN
PRINT "A>B"
RETURN: REM ... END

This illustrates the use of ON ... GOSUB . Note that the fail cond ition also call s a
subroutine, so it must be pointed at a RETURN instruction at th e minimum (any
handy one will do!) . You may also note the technique used to ind ent BASIC lin es.

32

,,...

50Hz Superboard display
J.C. Harri s

Thi s circuit was originally lashed up on a breadboard, and when it was working
properly I built it on to the prototype area of the computer. On looking at it again
it looks as if it might be possible to omit the 74121 and achieve the same result.
But at least as it is shown I can say that it gives a steady display of over 28 lines

ClS

IIUNC DISPI..FIY ~ . -
I I

c1s_J I I
I
I I

I ..
Cl&

VS tVS

sv

F I RE ltCNlS HB. .. E

C 16

DATA llJII<
US6 PIN 12 •

1'

sv

FLIP FLCJ>

C 16

• CUT EX1STIN6 TRACl<S

1/SO SEC

1/60 SEC

I
DISPLAY

T2

Tl

L_

~
~
• I

~

~
!£SET COUNTERS

C9 · ' c1z:::.::=jj
c1!____J I

112 7403

Cl2 '"I I VS MIS PINI U65

SY

--91F

1/2 . 7403

PIN 7 GIN)

PIN 14 SY

33

without any circuit layout problems. Processor operation was not affected by
resetting the counters.

Flip-flop divides C15 to "C16". N1 gives a reset pulse to counters U30, U59, U60,
U61 and C16 after time T3, thereby extending VS to 1/so second (actually 1/so.2
second). The display is blanked in T3. N2 gives a pulse to fire U65 (VS monostable)
at a time such that the display is in the centre of the scan.

Some modifications to the Superboard are required. Isolation of pin 1 of the
counters is not straightforward, and to cut the track to pin 12 of U56 I had to
unsolder the chip. (This could possibly be omitted since the display in T3 would
probably be in the TV overscan area.)

REVIEW

Magnum EPROM board
reviewed by J.M. Leach

Magnum Electronics, at 3 New Inns Lane, Rubery, Birmingham, have introduced a
series of boards for the OSI Superboard/UK101 which plug into the 40-pin
extension socket. Their range includes a 6-socket motherboard, an 8K RAM card,
link selected from $2000 to $7FFF, and an 8K EPROM board, with the Extended
Monitor on an EPROM thrown in as a package at a bargain price of £50.

We decided that this board would be a useful extra for the UK101, so after a
telephone call to find out about the address decoding, we posted off a cheque.
The board kit arrived by return of post (an almost unique occurrence!) and after a
couple of hours with the soldering iron and the clear and explicit instruction s I
plugged in the board, connected by a generous two feet of 40-way ribbon cable,
and found that it worked first time. So now we have the Extended Monitor
permanently on tap, with a further 6K EPROM available for extra goodies , such as
our auto line-number routine, the A Y-3-8910 music chip driver etc.

Magnum have made some changes to the Extended Monitor, which now starts
at $9800. The memory-change command (was @) is now U, with/ to increment
and - to decrement memory, ie a one-finger key input. / also steps the
disassembler, which is a bit of a nuisance when printing a list as the / appears at
the end of each 13 lines. A <CONTROL-)> (linefeed on the UK101) would have been
useful as an alternative. In the U mode ';' gives the ASCII equivalent of the
current byte. Otherwise the commands are the same as the original version, apart
from J and @. The J command gets ready for a return to BASIC, followed by a
warmstart, while@ go ·~s direct to the resident machine-code monitor at 0000. The
<RUBOUT> key deletes the characters on the screen, but does not appear to affect
the input buffer. If a mistake is made it is wise to abort with a <CR > and start
again!

It is really helpful to have this facility permanently available, and not sitting right
in the middle of the UK101's 8K memory. Now, on with a new EPROM with all the
useful routines that are too tedious to load up each time.

34

,,..

)

Save your Keyboard with a Cheap Joystick

John Partridge

. I have found that the Two-Axis Joystick sold by Maplin (HQS0E at £2.95) is suitable
for connecting to the keyboards of C1 's and C2's for games playing.

Although the joystick uses two potentiometers, these are short travel, and have
a low enough resistance at both ends to a_ct as switches.

I use the RO line of the keyboard connected to the wiper of the pots, and the
other pot terminals connected to C1 to C4. A fire button connected from RO to CS
completes the arrangement.

The position of the joystick can be found with a PEEK (57100), which will return
3, 5, 9, or 17 with 33 from the fire button.

A suitable case is the R.S. Components 508-914, which has enough internal
depth to take the joystick, but it is a convenient size for holding in the hand.

EPROM MEMORY BOARD AND PROGRAMMER

As advertised in the last but one issue of OSI User Group Newsletter, the MCS/A2
EPROM Memory Board and Programmer is available now in kit form from M.C.S.
Electronics, 9 Willowfields, Hilton, Derbys. DE6 SGU.

This kit offers you a High quality, fully buffered memory board with 8 x 24 pin
EPROM sockets, user defined addressing and also an EPROM PROGRAMMER for
2K, 4K, 8K and 16K single supply rail EPROMs, all on one PCB. Kit has been
designed to plug directly into your Superboard or Compukit UK 101 via 40 way
ribbo n cable.

Kit comprises PCB sockets and all components including programmer power
supply, control software on tape and comprehensive manual. Price, excluding

' EPROMs, £59.95p.
Optional extras are as follows:- 12" 40 way ribbon cable (with plugs) £4.95p,

Textool ZIF socket £6.90p, 16 pin DIL switch (to select EPROM type) £2.00p. Don't
forget we also supply Exmon in EPROM £6.50, and Assembler in 3 EPROMs
£20.00p. Please include your original tapes with order. There is no VAT to pay.

35

..

UK101-SUPERBOARD
EXPANSION
A full range of integrated enhancements now available
ROMDOS
ROMDOS has been commissioned and written specifi
cally tor the PREMIER UK101/OHIO Disk System. It is
principally aimed at the user with a small capacity RAM
machine, but is also extremely useful tor the larger RAM
machine user since ii allows BASIC programs to run with
disk with little or no alteration. ROMDOS links the
standard BASIC-in-ROM with a disk controller program
so no RAM memory is used for the BASIC interpreter and
under 4K for ROMDOS , giving an 8K saving in memory
over the normal OS-65D system . The BASIC-in-ROM
continues to work at its normal high speed and is
enhanced by a wide range of disk commands . The
system is compatible with all standard Premier EPROM
upgrades such as BASIC 4, BASIC 5, and TOOLKIT 2.
ROMDOS comes as a two disk set with complete
documentation . PRICE £17.95

FLOPPY DISK CARD
UK101/OHIO. The Premier F.D.C features :- Integral
Data Separator or link-selectable for on-drive separator if
required. Supports 4 x single-sided 5.25 or 8in drives or
2 x double-sided 5.25 or 8in drives . 1 or 2MHz operation
(DOS permitting) . Interrupt linkable if required . Padding
for future options . Shugart Bus as supplied ; linkable to
other Bus requirements providing signal compatibility is
maintained . OSI system compatible (software
and hardware) . Drives available early March.
PRICE Delivery - March.

SPECIAL OFFERS
TOOLKIT 2 + MINI EPROM BOARD
BASIC 5 + MINI EPROM BOARD
CODEKIT + MINI EPROM BOARD
WORD WIZARD + MINI EPROM BOARD
SOUND/VIA- Base, Sound and Via kits

36

.,..

£29.95
£29.95
£29.95
£29.95
£43.95

CEGMON
CEGMON is Premier's standard monitor for the UK101/
OHIO range . Expansion to disk becomes a reality once
CEGMON is installed .
• DISK BOOTSTRAP !
• full BASIC editor : delete , copy , concatenate. Auto
repeat on all functions .
• powerful , sophisticated screen management system.
• user-defined windows , non-scrolling areas
machine code monitor , tabular display , memory move,

MIC SAVE
keyboard gives true rubout, typewrit er response
BASIC & Assembler vectors in RAM

• comprehensive manual includes entry points
• Extensive software available
• PRICE £25.87 State machine when ordering

SCREEN ENHANCEMENT KIT
This kit offers 20 software selectable screen formats tor
the UK101/OHIO , including a true 32 x 64 format. It
plugs directly into the main board (OHIOs need sockets
inserting) and provides almost every available screen
format for ultimate software compatibllty .
PRICES KIT £55.95 BUILT £69 .95. (+ £2.00 P&P).
Fitting sevice available .

SOUNDN.1.A BOARD
The TES II VIA/SOUND kit gives you up to 56 lnpuV
Output lines and programmable sound generation. In
order to allow total flexibility , we are offering the kit in
low-cost packs. The Base Kit consists of PCB, connector,
address decoding and buffering , plus IC sockets. The
Sound Pack consists of AY-3-8910 sound chip, amplifier
and components . The VIA Pack consists of VIA and
support.
BASE KIT £24.95 SOUND £11.95 VIA £9.95

BASICS for UK101 and OHIO
adds 17 new BASIC words to your interpreter which can
be used in program lines and gives machine-code
response speed. HUN , VLIN, SCA , BLK, SET and TEST
allow high speed generation and manipulation of
graphics. PRINTUSING , PRINTAT, INAT allow total
control of screen inpuVoutput. GET (key), RD (Read
DATA), GS and GT (GOSUB and GO"i'O a variable) , GO
and GO$ (GOTO a machine code routine), allow total
program flexibility . WI and CWI allows CEGMON screen
manipulation . BASIC 5 is available tor CEGMON ,
MON02 and SYNMON/MON01 only . State precisely your
computer and monitor when ordering . Comes complete
with comprehensive manual.
Available on DISK or in EPROM (9000hex) £19.95

BASIC 4 cassette file handling system
This new EPROM for the UKt01 /OHIO provides a
comprehensive file-handling system , capable of working
at up to 4800 baud.

named programs to cassette
verify tape contents facility
reliable high speed SAVE/LOAD
selectable auto/run of loaded BASIC program
superb crash recovery command (OLD)
original SAVE/LOAD commands unaltered
reduces LOAD/SAVE times by up to 40%
seven new SAVE/LOAD commands
non-destructive memory test
initialises BASIC 5 automatically it resident BASIC 4 is

a plug-in replacement tor your existing BASIC 4 ROM.
Not suitable for MON01 or Synmon monitors . PRICE
£11.95

TOOLKIT 2 for UK101/OHIO
The most powerful TOOLKIT on the market, TOOLKIT 2
gives the following facilities in only ONE EPROM.
REPL exceptionally powerful Global Search and Replace
of BASIC listings . DUPL copy a line into a new line. LIST/
controlled listing of program . FIND anything in a BASIC
listing. RENUM renumber from any start in any increment
- full error messages , totally reliable . AUTO any start ,
any increment. DELETE high speed block line delete .
VIEW cassette dump verification . TRACE superb trace
feature - screen transparent. MC enter the monitor
quickly! TOOLKIT 2 also lists on error and cures the
warm start 'OM ERROR' bug. Available in EPROM only
(80000hex) , for CEGMON . MON01 & 2, and SYNMON
monitors (DISK soon).
PRICE £19.95. State machine & monitor .

INVADERS
Quite simply the best machine code game ever written
for the UK101/OHIO. PREMIER have succeeded where
others have tailed. Our INVADERS is faster than any
version we have yet seen, including Arcade machines .
INVADERS has all the features you expect , plus superb
graphics and two-player option . AVAILABLE for CIE and
UK10t . PRICE £7.95.
Also now available for the 32 x 48 CEGMON based
UK101 (with new BASIC 1) is KAMIKAZE INVADERS - a
new slant on this popular game . £5.95.

POSTAGE & PACKING Software 7\Jp.Jler order, EPROMS/DISKS 90p per order, HARDWARE £1.50 per item.
Maximum £3.00. ALL PRICES INCLUDE V.A.T.

r:.KMD1l ~.~!~!!Iy~!~E~!~x,!!!~,! ~

37

-.

..

I

i
1.
I
I

l

BACK PAGE PROGRAM
10 REM: 'Midnight Hacker' by SA Smith, 1981
100 VI=53248+37+64:CU=53t.:.o:=:::T$(1)="·~·sN ERROR"
110 THZ)="-:'OM ERROR" : T$(3)="NO CHANCE'"
120 PRINTCHR$(26)"To the Midnight Hackers!"
1:::0 FOR L=l TO 14
140 : FOR C=l TO 18
150: READ N: IF N=O THEN N=32
160 : IF N=l THEN N=187
170: POKE VI+L*64+C,N
180: NEXT C
190 NEXT L: POKE CU,95
200 FOR TEXT=! TO 3
210: T$="RUN"!GOSUB 280!FORDE=1 TO 2000:NEXT
220 : T$=T$(TEXT>:GOSUB 28 0
230: T$="0K":GOSUB280:FOR DE=! TO lOOO!NEXT
240 : CH= 16 1 !GOSUB 360!CH=32!GOSUB 360
250 ! FOR L=53419 TO 53426!POKE L,148!NEXT
260 NEXT TEXT
270 GOTO 200
280 FOR CH=! TO LEN(T$)
2'10 ! POKE CU+CH-1,ASC<MID$(T$, CH,1))
300 NEXT CH
310 FOR C=O TO 9
320 ! A=PEEK(CU+C-64)!POKE CU+C-128,A
330 ! A=PEEK(CU+C) :POKE CU+C-64 ,A
340: POKE CU+C,32
350 NEXT C : POKE CU,95: RETURN
360 FOR R=O TO 5
370 ! FOR O=O TO 1 STEP 0,2
380 : POKE 53614-R*M-R*O,CH
390 : POKE 53615-R*M+R*O,CH
400 ! NEXT 0
410 NEXT R ! RETURN
420 DATA ,221,148,148,148,148,148,148,148

. 430 DATA 14f:,148,148,148,217,148,148,222,,
440 DAT A 140,,,,,.,,,,.,149, 173,, 139,.,140,,
450 DATA ,,,,,,,.,149,173,,139,,,140,.,,,,.,
460 DATA ,,,149,173,,139,,,140,,,.,221,195
470 DATA t:35,135,197,222.,149,173,,139,,,140
480 DATA ,,,,202,,..,199,,149,,,139,,,140,,,
490 DATA 224,136,,,.,143,225,149,227,228,139
500 DATA ,,220,148,158,148,148,200,,,,,201
510 DATA 148,215,158,148,223,,210,135,135
520 DATA 135,135,135,1,1,1,1,1,1,135,135,135
530 DATA 135,135,207,209,128,128,176,161,1,1
540 f\ATA 1,1,1,1,1,1,161,178,128,128,208,136
550 DATA ,,1,1,1,1,1,1,1,1,1,1,1,1,,,143,209
560 DATA 154,161,1,1,1,1,1,1,1,1,1,1,1,1,161
570 DATA 154,208,209,128,128,1,185,1,1,1,1,1
580 DATA 1,1,1,186,1,128,128,208,,,,1,185,1
590 DATA 1,1,1,1,1,1,1,186,1,,,

OK

'

